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Abstract — In this work, an array of three surface 
Electrography (sEMG) sensors are used to acquired muscle 
extension and contraction signals for 18 healthy test subjects. The 
skeletal muscle force is estimated using the acquired sEMG 
signals and a Non-linear Wiener Hammerstein model, relating 
the two signals in a dynamic fashion. The model is obtained from 
using System Identification (SI) algorithm. The obtained force 
models for each sensor are fused using a proposed fuzzy logic 
concept with the intent to improve the force estimation accuracy 
and resilience to sensor failure or misalignment. For the fuzzy 
logic inference system, the sEMG entropy, the relative error, and 
the correlation of the force signals are considered for defining the 
membership functions. The proposed fusion algorithm yields an 
average of 92.49% correlation between the actual force and the 
overall estimated force output. In addition, the proposed fusion-
based approach is implemented on a test platform. Experiments 
indicate an improvement in finger/hand force estimation. 
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I. INTRODUCTION 

 Investigation into the field of advanced prostheses was 
started after World War II [1]. Since then it has been an 
ongoing research topic that yielded many innovations. 
However, to date, there is no prosthetic device available at an 
affordable cost that mimics the human hand well. There are 
also no affordable prosthetics on the market with vibrotactile 
feedback [2]. In order to measure the electrical activity of the 
skeletal muscle force, one can utilize an invasive, needle 
electrode based method or a non-invasive, skin surface based 
technique. As a result of its simplicity, there has been a lot of 
research done in the field of surface Electromyographic 
(sEMG) based prostheses. The sEMG signal obtained from the 
muscle contraction can be used as a control signal for a 
prosthetic limb [3]. Since it is acquired from the surface of the 
skin, it passes through several tissue layers before reaching the 
skin surface and it will be influenced by many external factors, 
such as environmental noise and electrophysiology [4]. In 
order to make better use of the sEMG signal, filtering is 

required. There are different filtering techniques available and 
the authors explored an array of different filters in their 
previous work [5]. In particular, the half-Gaussian filter as used 
in [5, 6] has performed very well; however, it also poses a 
severe drawback: it cannot be implemented in real time. Hence, 
in this work, wavelet transforms are utilized to filter sEMG 
signals. One of the main advantages of the wavelet transform 
based filtering technique is that it can be implemented in real-
time and is computationally relatively inexpensive. 

In general, the force generated by the muscle action can be 
achieved by muscle activation and muscle contraction [7]. The 
measurement of muscle force is required in many applications 
such as prosthetic control, human-robot interaction, etc [8]. 
According to [9], force estimation based on sEMG 
measurements is one of the best alternatives to the 
commercially available force measuring sensors. There are 
different sEMG-force relationship models proposed by the 
research community. A few to name are: Hill-type models [10], 
cross-bridge models [11], and curve fitting methods [12].  In 
this work, we utilized a non-linear Wiener Hammerstein (WH) 
model obtained through the use of system identification [13]. 
This allows modeling the dynamic relationship between the 
sEMG and the corresponding skeletal muscle force.  

Usually, sEMG data is measured by using a single sensor. 
However, in this work, an array of three sensors is used and the 
data is fused using a proposed decision-level fusion algorithm. 
The paper is organized as follows. The present section covers 
the literature review and introduction, and the next section 
describes the experimental set-up. These are followed by the 
proposed design which explains about the filtration, WH 
algorithms and the proposed fusion algorithm followed by the 
results and discussion and some conclusions are provides at the 
end. 

II. EXPERIMENTAL SET-UP

Fig. 1 shows the experimental set-up used to capture sEMG 



and force signals. The motor points and the appropriate EMG 
electrode attachment points of the subject were identified by 
using a wet probe point muscle stimulator (Rich-Mar 
Corporation, model number HV 1100). The proposed fusion 
algorithm is developed for arbitrary number of sensors. 
However, for this work the utilized sensor size in relation to 
the motor point is too large to employ more than three sensors. 
The sEMG sensor at the center in Fig. 1 is at the motor point 
while the other two sensors are adjacent to the motor point. 
The sEMG signals are captured from the surface of the skin 
using DE 2.1 sEMG sensors with a DELSYS® Bagnoli EMG 
system and LabVIEWTM. The sEMG and the skeletal muscle 
force signals are acquired simultaneously, while the test 
subjects are made to perform random grasping actions. The 
force signal is acquired by a Force Sensing Resistor (FSR). 
Both the sEMG signals and the corresponding skeletal muscle 
force are acquired at a sampling rate of 2000 samples per 
second. Prior to placing the sEMG sensors, the skin surface of 
the subject was prepared according to the International Society 
of Electrophysiology and Kinesiology (ISEK) protocols [14]. 

Fig. 1. Experimental Set-Up 

III. PROPOSED DESIGN

Filtration: 

     After extracting the data from the sEMG sensors around an 
individual motor point, the sEMG data is filtered using a 
Wavelet Transform (WT) based Daubechies 44 filter at seven 
levels of decomposition. The single level of Discrete Wavelet 
Transform (DWT) is given as 

[ ] *fi ufi i ufi i
k

u n u g n u k g n k ,  (1) 

      where i  is the corresponding sensor, 
      ufiu is the unfiltered sEMG signal, 

fiu - Filtered sEMG signal, 

ig - Low-pass filter with impulse response. 
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 where ih - high pass filter 

System Identification: 

     After pre-processing the data, the sEMG data 1 2( ), ( )u t u t
and 3 ( )u t from the three sensors and their corresponding 
skeletal force signals are used to identify the dynamic 
relationship by utilizing System Identification (SI). The model 
structure of the linear and nonlinear dynamics of the sEMG 
signal and the corresponding skeletal muscle force is selected 
by using a Wiener-Hammerstein (WH) model. 

The mathematical representation of the modeling is given by, 
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where  is the sEMG signal and  is the skeletal 
muscle force signal.  and h  are nonlinear functions,  
and  are internal variables,  and  are 
polynomials,  is the back shift operator, and  is the 
output error. The WH model structure utilizes an OE model, 
which is given by, 

( )ˆ( ) ( ) ( )
( )

B qy t u t nk e t
F q

 (7)

where  is the system delay and  is time index. From (4) 
and (7), WH captures both the linear and non-linear dynamics 
of the sEMG signal. 

Three WH models, 1M , 2M  and 3M are extracted by utilizing 

the data from the three sensors 1u , 2u  and 3u  and their 
corresponding skeletal muscle force ( y ). With these three 
models, three features are computed: Approximate Entropy 
(AE), Relative Error (RE) and the correlation. Based on these 
features, a fuzzy logic inference system is designed to 
compute the weights of each individual model. The weights 
from the fuzzy logic represent the influence of each model on 
the estimated skeletal muscle force. The intent of the fusion is 
to obtain a better skeletal muscle force estimate.  

Fusion Algorithm: 

Step 1: Compute entropy, from a time series of data 
ˆ ˆ ˆ(1), (2),... ( )i i iy y y N Where N - number of data points 



Step 2: Fix m , an integer, and r , a positive real number. The 
value of m represents the length of compared run of data, and 
r specifies a filtering level. 

 
Step 3: Form a sequence of vectors (1), (2),... ( 1)x x x N m in 

mR defined by the discrete sequence of the input sEMG data  
( ) [ ( ), ( 1),... ( 1)].x k u k u k u k m  

 
Step 4: Use the sequence (1), (2),... ( 1)x x x N m to construct, 
for each k , 1 1k N m ( )m

kC r (Number of ( )x j such 
that ( ), ( ) )d x k x j r / ( 1)N m *,d x x is defined as

* *, max ( ) ( ) ,
a

d x x u a u a where ( )u a - m  scalar 

components of x d - represents the distance between the 
vectors ( )x k  and ( ).x j  
 
Step 5: Define 
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 The quantity ( )m
iC r  is the fraction of patterns of 

length  that resemble the pattern of the same length that 
begins at interval we define ( )m r  as the mean of 
these ( )m

iC r  values 
 
Step 6: Define approximate entropy (E) as   
 

1log( ( )) log( ( )).m m
iE r r  

 
where log is the natural logarithm, for m and r fixed as in 
Step 2. 
 
Step 7: Compute Relative Error (RE) between actual force  
( y ) and the individual WH model estimated force ( ŷ ) 

ˆi

y
y

, where ˆy y y  

y - Actual force from FSR 
ŷ - Individual WH model estimated force 

 
Step 8: Compute Correlation coefficient as 
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where - Mean, - Standard Deviation 
 
Step 9: Define the fuzzy inference system, 
 

 
 
where  denotes the  fuzzy rule, 

are the  

entropy, correlation and relative error inputs for the  
model is the output weight of the fuzzy rule ,and 

is the Gaussian fuzzy membership function  
are 

triangular fuzzy  membership functions respectively. 
Step 10: Compute the fused model output 
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Fig. 2. Surface plot for the entropy, correlation coefficients and the 

corresponding weights for each sensor 

 
Fig. 3. Surface plot for the entropy, RE and the corresponding weights for 

each sensor 
 

 
Fig. 4. Weight classes for the fuzzy inference system 

 
Fig. 2 and 3 shows the fuzzy inference system surface plots 
based on entropy, RE and the correlation coefficient for each 
sensor. Fig. 4 shows the triangular defuzzification for the 
output weights of the fuzzy inference system, where VLW, 
LMW, LW LHW, MLW, MW, MHW, HLW, HMW, HW and 
VHW represents weights of the three WH models based on 
Entropy (E), Relative Error (RE) and the correlation. 
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TABLE I: MODEL BASED RESULTS AND OVERALL ESTIMATED FORCE CORRELATION COEFFICIENTS

Subjects 
1M  

2M  
3M  

ˆ
fY     W    W    W 

1 30.67 70.05 0.31 0.23 27.4 72.67 0.17 0.67 41.93 62.23 0.52 0.10 92.48 
2 32.48 69.13 0.40 0.25 26.09 73.24 0.13 0.72 41.43 65.90 0.47 0.30 93.09 
3 32.21 71.39 0.23 0.19 28.71 74.10 0.19 0.65 39.08 68.54 0.58 0.16 92.66 
4 31.67 68.20 0.29 0.20 27.98 71.89 0.20 0.63 40.35 63.55 0.51 0.17 92.20 
5 39.53 61.24 0.55 0.07 29.55 73.50 0.18 0.64 30.92 70.82 0.27 0.29 92.25 
6 32.67 68.97 0.57 0.17 27.60 71.84 0.19 0.62 39.73 62.39 0.24 0.21 92.21 
7 33.56 69.21 0.21 0.21 28.39 72.54 0.19 0.61 38.05 64.56 0.60 0.18 92.27 
8 30.12 71.51 0.21 0.23 26.05 70.23 0.15 0.69 43.83 63.0 0.64 0.08 92.03 
9 42.29 62.93 0.61 0.06 26.11 71.47 0.13 0.73 31.60 68.31 0.26 0.21 92.09 

10 33.23 70.34 0.25 0.18 28.92 72.82 0.17 0.66 37.85 62.45 0.55 0.16 93.10 
11 30.02 71.23 0.27 0.20 27.57 74.30 0.14 0.75 42.41 64.51 0.59 0.05 93.07 
12 32.55 69.90 0.26 0.16 28.39 73.45 0.18 0.64 39.06 61.57 0.56 0.20 92.15 
13 31.11 68.70 0.28 0.14 27.90 71.32 0.17 0.68 40.99 62.90 0.55 0.18 92.30 
14 33.03 70.25 0.25 0.19 26.74 71.64 0.15 0.73 40.23 61.36 0.52 0.08 93.17 
15 30.21 68.97 0.36 0.17 27.13 70.16 0.11 0.77 42.66 63.56 0.53 0.06 92.28 
16 41.05 58.76 0.59 0.10 26.50 72.96 0.14 0.73 32.45 69.92 0.27 0.17 92.91 
17 30.78 69.11 0.39 0.22 27.93 71.67 0.11 0.76 41.29 62.21 0.50 0.02 92.17 
18 30.55 69.62 0.28 0.13 28.45 70.93 0.18 0.64 41.00 63.60 0.54 0.23 92.31 

- % Relative Error, - % Correlation, - Approximate Entropy 

 

IV. RESULTS AND DISCUSSION 

 
Fig. 5. Unfiltered sEMG signal and the wavelet transform based DB 44 filter 

at seven levels of decomposition 

 
Fig. 6. Fusion algorithm estimated force and the actual force from the FSR 

plotted together 
 
     Fig. 5 Shows the unfiltered sEMG signal and the wavelet 
transform based DB 44 filter at seven levels of decomposition. 
Fig. 6 shows the fusion algorithm estimated force ( ˆ

fY ) and the 
actual force ( y ) from the FSR plotted together.  
 
 
 

 

 
Fig. 7. Fusion algorithm estimated force and the actual force from the FSR 

plotted together for a different subject 
 
From Fig. 6, it can be inferred that fusion algorithm estimated 
force is following the same trend as the actual force from the 
FSR. Fig. 7 shows the validation of the fusion algorithm with 
a different test subject’s sEMG data. 
 
     Table I provides a comparison of the entropy, RE and the 
correlation coefficients between actual force along with the 
individual WH model and fusion algorithm estimated forces 
for the 18 different subjects. The models 2M  constructed 
from the sensor data 2u - which located right on the motor unit 
– is yielding a better correlation coefficient and a lower RE 
between the actual force   and the WH model estimated force. 
 
     Also, the entropy of 2M  is very low for all the subjects 
when compared to other models 1M  and 3M . Therefore, by 
the definition of entropy from the information theory, it is 
evident that 2M  is more predictable and has more information 
than the other two models. It is also evident from Table I that 
the weights computed by the fuzzy inference system are 
following the same trend, giving the highest weightage to 2M . 
Therefore from step 10 of the fusion algorithm, the estimated 
force from 2M  is given the highest weightage. It is evident 
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from the last column of Table I that the fusion algorithm 
estimated force ( ˆ

fY ) is showing a marked improvement in 
terms of correlation with the actual force when compared with 
individual WH model estimated forces for all the subjects. 
 
     It can also be inferred from Table I that,  is giving the 
second highest weightage followed by  except for subjects 
5, 9 and 16. It is interesting that all the three features RE, AE 
and correlation are showing better performance for  over 

 for these three subjects. Therefore, the proposed fuzzy 
logic inference system is able to adapt to this trend. 

V. CONCLUSION AND FUTUREWORK 
 

In this paper, a Wavelet with Daubechies 44 based filter is 
implemented for the use of filtering sEMG data. The filtering 
approach provides better performance compared to the other 
filters used by the authors in their previous work [5, 15]. An 
added benefit for using the proposed Wavelet based filter is 
the ease of implementation for real time use, which is not 
possible for the half Gaussian filter. Time domain nonlinear 
WH modeling technique is utilized to characterize the 
dynamics of the sEMG/skeletal muscle force data. A 
computational intelligence based fusion algorithms is 
proposed for the sEMG sensor data fusion for the better 
estimation of the skeletal muscle force from Table I [5, 16] 
and also make the sEMG/skeletal muscle force models 
resilient to sensor miss alignment.  

 
Although better individual models can be inferred using SI 

under perfect conditions, the proposed fusion algorithms 
improves the predicted force estimate consistently. The 
influence of cross talk can be reduced by using filtering. From 
the results, it is clear that the proposed model fusion algorithm 
works well for the sEMG-force relationships. The proposed 
fusion algorithm is giving the highest correlation of 93.10% 
between fusion algorithm estimated force ( ˆ

fY ) and the actual 
force ( y ) compared to the individual WH models skeletal 
muscle force estimation. This implies that the fusion algorithm 
is improving the overall output. The proposed fusion 
algorithm is computationally efficient when compared to other 
algorithms that were previously developed by the authors [15, 
16]. 

 
     The sEMG based finger force models (nonlinear WH) are 
constructed based on the normal limb sEMG and a force 
measurement. It gives the dynamic relationship between 
sEMG and skeletal muscle force. These dynamic models can 
be mapped to an amputee who has a variable amount of 
residual musculature, varying levels of atrophy, and an 
unknown force output. Recalibrating the models with the 
sEMG data from the amputee can be accomplished by using 
an existing limb or standard force models (in case of multiple 
limb amputation).  This design can also be extended to above 

elbow amputations by approximating the sEMG data from the 
biceps and triceps. 
 
     Future work will address the real-time implementation of 
this algorithm. From the results it is also evident that this 
algorithm can be utilized for uncertainty analysis and anomaly 
detection. It will be very interesting to apply this algorithm for 
uncertainty analysis of a much larger sEMG array sensor. 
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